- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bi, Honghao (1)
-
Cothron, Samuel (1)
-
Ellison, Evan_E (1)
-
Li, Ling (1)
-
O'Conner, Seth (1)
-
Tanvir, Rezwan (1)
-
Towery, Katherine (1)
-
Voytas, Daniel_F (1)
-
Wang, Lei (1)
-
Yang, Bing (1)
-
Zheng, Wenguang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Genome editing is a revolution in biotechnology for crop improvement with the final product lacking transgenes. However, most derived traits have been generated through edits that create gene knockouts.Our study pioneers a novel approach, utilizing gene editing to enhance gene expression by eliminating transcriptional repressor binding motifs.Building upon our prior research demonstrating the protein‐boosting effects of the transcription factor NF‐YC4, we identified conserved motifs targeted by RAV and WRKY repressors in theNF‐YC4promoters from rice (Oryza sativa) and soybean (Glycine max). Leveraging CRISPR/Cas9 technology, we deleted these motifs, resulting in reduced repressor binding and increasedNF‐YC4expression. This strategy led to increased protein content and reduced carbohydrate levels in the edited rice and soybean plants, with rice exhibiting up to a 68% increase in leaf protein and a 17% increase in seed protein, and soybean showing up to a 25% increase in leaf protein and an 11% increase in seed protein.Our findings provide a blueprint for enhancing gene expression through precise genomic deletions in noncoding sequences, promising improved agricultural productivity and nutritional quality.more » « less
An official website of the United States government
